Efficient Usage of Debian on
Embedded Devices

OSADL Networking Day, 5. June 2019

Matthias Luscher
lueschem@gmail.com

Initial Position

loT — It's a Debian world...

l7 2019 10T SURVEY

Key takeaway

Linux distributions
It's a Debian World...

with a strong showing by Yocto

40
Debian and derivatives
a8 (Raspbian, Ubuntu /
| Ubuntu Core) were
e i picked by at least
a third of respondents.
10 :
i CentOS & Fedora /
0 : Fedora IoT came in second place,

t

ecllpse org
COPYRIGHT (C) 2019, ECLIPSE FOUNDATION, INC. | MADE AVAILABLE UNDER THE ECLIPSE PUBLIC LICENSE 2.0 (EPL-2.0)

Source: https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf

https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf

... dominated by ARM and Intel hardware ...

Key takeaway !

Hardware architectures used
for loT gateways

ARM and
Intel
Dominate

arm

70% 42%

Use gateways and edge Use gateways and edge
nodes with ARM Variants nodes with Intel x86 and
x86_64 CPUs

Source: https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf

https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf

... requiring a lot of infrastructure!

= cYON&r

[Fre—

Read the Docs a
documentation

cyon
dns registration

Google
e-mail
analytics
social networking dOCker
single sign on docker
registry

GitHub

GitHub %
source code management
bug tracking
static web page
/ single sign on

TR :
ez Iravis Cl

Travis CI
continuous integration

%0
i
° -
draw.io -8 -8 Ubuntu
draw.io - edi developers apt server
drawings
4 .
' ' Debian
‘ ' apt server
launch
personal package archive DISQUS Raspberry Pi
comment hosting Mender.io real hardware
device updates environment

See also: https://www.get-edi.io/Infrastructure-at-Your-Fingertips/

https://www.get-edi.io/Infrastructure-at-Your-Fingertips/

Presentation Content

A collection of best practices
on how you can efficiently use
Debian in such an
environment.

An introduction of the tool edi

and some insights on how it

will speed up your

development process (with a hitps:/lwww.get-edi.io
special attention to the build of

OS images).

https://www.get-edi.io/

Development Setup

Create a digital twin of your target hardware!
(And do 95% of the development without the target hardware.)

development host > | eqg. Ubuntu 18.04 LTS

* running on amd64 hardware
N * equipped with LXD

4 .
development container
/—\ i Digital Twin of Target Hardware
- * same Debian release as target
[compHeJ (run j * same configuration as target
* same interfaces as target
(network, serial, etc.)
* but amd64 architecture
r \ * running as OS container
~ edit ~ * ready for cross compilation
k J y * shared folder with host OS

generated by a single command:
edi -v lxc configure ...

Integrate your favorite IDE!

Aktivititen ® QtCreator v Fr22:05

File Edit alyze Tools Window Help

-+ New Project = Open Project

Sessions Recent Projects

1@ default (last

New to Qt?

Learn how to develop
your own applications and
explore Qt Creator.

About Qt Creator
Get Started Now

Qt Creator 4.2.0
Based on Qt 5.7.1 (GCC 6.3.0 20170415, 64 bit)

Copyright 2008-2016 The Qt Company Ltd. All rights
L otAccount L reserved.

The program is provided AS IS with NO WARRANTY
OF ANY KIND, INCLUDING THE WARRANTY OF
DESIGN, MERCHANTABILITY AND FITNESS FOR A
:-h Blags PARTICULAR PURPOSE.

- Online Community

Close

@ UserGuide

AP. Type to locate (Ctrl+K) 5 2 Search R... 3 Applicatio... 4 Compile ... 5 Debugg

stretch-cross port DISPLAY=:@

port QT_SCALE_FACTOR=1
port QT_AUTO_SCREEN_SCALE_FACTOR=0
export QT_SCREEN_SCALE_FACTORS=2
qtcreator
failed to retrieve device information
on 4 or later of flush ension not found
d to load driver: i915

* You can choose whatever IDE you like.

* To improve the overall handling, it is advisable to run the IDE
within the development container.

More information: http://www.get-edi.io/Running-GUI-Applications-Within-LXD-Container/

http://www.get-edi.io/Running-GUI-Applications-Within-LXD-Container/

Develop (real time) applications!

development host

/ user space
/ development container ~~ \
N N
GUI business gEELET
. . with real
application logic time priorit "
N N
& * y J/
/ N
ernel space
Linux PREEMPT_RT kernel)
M (M <>

| N

000

O00
o000

containers do not downgrade
the real time capabilities of the
host system

relevant devices can be
forwarded to the container

host OS needs to be equipped
with a PREEMPT_RT patched
kernel if real time behavior is
required

000

Ethernet based
field bus

O00
o000

Do not forget to setup a package repository!

Key

—) Debian packages
——) source code
===l OS images

official Debian
package repository

deb.debian.org

snapshot.debian.org

+—

private Debian
repository

repository mirror

A—X

Debian

—

target device

build server

SCM server

PR
<

developer

()

-

the Debian package
repository is an
Indispensable part
of your development
Infrastructure

do the extra mile and
package your software
as proper Debian
packages

repository hosting solutions:
https://www.aptly.info/
https://jfrog.com/artifactory/
https://packagecloud.io/

https://www.aptly.info/
https://jfrog.com/artifactory/
https://packagecloud.io/

Cross Compilation

What Is cross compilation?

r/development host | ’/target system\
1
Cross
compile

(Crun
Ceat)

_,,ff

- _/ . _/

Wikipedia: A cross compiler is a compiler capable of creating executable
code for a platform other than the one on which the compiler is running.

Easy: Kernel (no dependencies, well prepared for cross compilation)

Less easy: Libraries and executables (dependencies, maybe not cross
compilation aware)

Why cross compile?

OpenSSL compilation time

Target (Pi 3B)

Cross (i7-7500U) -
0

[minutes]

 Speed: Cross compilation is a lot faster!

* Flash: The target system might not have enough flash for compilation.

 Memory: The target system might run out of memory during compilation.

More information: http://www.get-edi.io/Compiling-for-Embedded-Debian-Target-Systems/

70

http://www.get-edi.io/Compiling-for-Embedded-Debian-Target-Systems/

How should | cross compile with Debian?

-

development host

N

[compnej

(Lmn

__/

development host

s . N
development container

N

[compnej [run j

 edit)

-

___/

~ [edit J -

_/

Environment is “self contained”: For Debian stretch you build within Debian

stretch.

The Debian project does build ARM packages on ARM hardware.

For a long time Debian was not well suited for cross compilation.

What has changed recently?

* Debian got broadly adopted for embedded devices.

* Multiarch and multilib got introduced in Debian wheezy: You can
add a foreign architecture and install libraries and foreign
libraries side by side:
sudo dpkg --add-architecture armhf

sudo apt update
sudo apt install <library>:armhf

* With Debian stretch the cross compilers became part of the
main Debian repository:

sudo apt install crossbuild-essential-armhf

Building Operating System
Images

How can | build images for my target system?

Ubuntu 18.04 development host
| |

edi Ixc configure ... edi Ixc configure ...

v

J :
armo64 arm64 dev amd64 cross
container container dev containe
I

edi image create ...

¢ s s A e .

Raspberry Pi3
image ssh/scp
I

|
bmaptool copy ...

0ooa

The “digital twin” cross development container gets built using a command
like this:

sudo edi -v 1lxc configure edi-pi-cross-dev pi3-stretch-armé64-cross-dev.yml

Y

Raspberry Pi3

Building a full OS image can be achieved with such a command:
sudo edi -v image create pi3-stretch-armé4.yml

More information: http://www.get-edi.io/A-new-Approach-to-Operating-System-Image-Generation/

http://www.get-edi.io/A-new-Approach-to-Operating-System-Image-Generation/

What happens behind the scene?

It starts from scratch...
... using debootstrap!
: Custom commands turn
/ QEMU emulates foreign | | ypo (oot file system into

architectures. an OS image.

edi image bootstrap CONFIG

Instead of using a chroot e
riniel oot e we launch a LXD i)

container.

edi Ixc prepare CONFIG edi image create CONFIG

minimal Ixd container

image archive / AﬂSlbIe gets USed to cg%rtgi%rrijz:ge

Al

customize the container.

edi Ixc import CONFIG

edi Ixc export CONFIG

edi Ixc launch edi Ixc configure
bl f)?d”};'ge; \ NAME CONFIG _(‘minimal running Ixd) NAME CONFIG _(fully configured) edi ixc stop CONFIG_ (‘configured, stopped edi Ixc publish CONFIG ﬁi?rf]‘a"ggfiﬁalx?ir;::n:
9 stors 9 { container) Ixd container \ Ixd container / 9 stors 9

What about different use cases?

>
digital twin \}
dev
container
. . di Ix nfigure ...
The edi project e e
configuration is built Kubernetes |docker
in a Wa.y that makeS N\ _____ediimage create /—-’_) build container
. |
It easy to support
multiple use cases emage R
without duplicating the . \ Jov
Setup' prOJect edi image create ... image

configuration

edi image create ...
test

image

production
image

How can | configure the use cases?

Configuration files | —_|
are written in
yaml and JinjaZ2.

e

edi supports as
many use cases
as required.

run

Use cases can be | —_|
adjusted globally,

per host and per

A
(0]
«
©
o
q‘g’ my-project-develop.yml
\ —
S~)
— config/overlay/
a: 42 my-project-develop.global.yml —
b: foo]
¢ bar config/overlay/
my-project-develop.HOST.yml —
b: bla .
config/overlay/
my-project-develop.USER.yml
b: baz
c: bingo
my-project-run.yml
— 1
— config/overlay/
a: 42 my-project-run.global.yml —
b: foo]
¢ bar - config/overlay/
a: 32168 my-project-run.HOST.yml —
config/overlay/

my-project-run.USER.yml

overlay\

user.

J L

result for
my-project-develop.yml

a: 42
b: baz
c: bingo

result for
my-project-run.yml

a: 32168
b: foo
c: bar

Can | update my system over the air?

H¥t Mender

< > C @& https://hosted.mender.io/ui/#/deployments/finished

Deployment progress

2019-03-15-1340-p...
pi-armhf
2

Finished Skipbed

Pending
Oh7m 18s

In progress

Started: 2019-03-15 13:50 Successful

]
© o Filed

Device ID Device type Current software Started Finished Deployment status

5¢5dfdd57dfct rpi-armhf 2019-03.. 2019-03.. 2019-03.. Suecess o0

5c8ac581d75¢ rpi-armhf 2019-03.. 2019-03.. 2019-03.. Suceess —

More information: https://www.get-edi.io/Updating-a-Debian-Based-loT-Fleet/

https://www.get-edi.io/Updating-a-Debian-Based-IoT-Fleet/

What partition layout shall | choose?

Key

—) Debian packages

=== OS images

Debian repository server hosted.mender.io

e N N

Bootloader

mounted as /boot/firmware
proprietary bootloader
u-boot.bin
uboot.env
boot.scr

Data Partition

mounted as /data

Root File System A Partition

mounted as /
contains full root file system
kernel
boot.scr
Mender update client

Root File System B Partition

mounted as /
contains full root file system
kernel
boot.scr
Mender update client

Target Device Storage

More information:

https://lwww.get-edi.io/Updating-a-Debian-Based-loT-Fleet/
https://www.get-edi.io/Booting-Debian-with-U-Boot/

Adjust your partition
layout before you ship
the first product!

https://www.get-edi.io/Updating-a-Debian-Based-IoT-Fleet/
https://www.get-edi.io/Booting-Debian-with-U-Boot/

What Is the longevity of my OS image?

LTS

The schedule allows
you to skip one release!

/| Attention:
(stretch)-backports will
not receive LTS support!

Debian 10 (buster) LTS

E(~5 years
Debian 8 (jessie) LTS
Debian 9 (stretch)
2015 2016 2017 2018 2019 2020

More information:
https://www.freexian.com/services/debian-Its.html

2021

2022 2023 2024 2025

https://www.freexian.com/services/debian-lts.html

Pitfalls

What can go wrong?

ssh host keys

software installation without Debian packages
choosing a local Debian mirror

skip signature checks

not reproducible customization

login credentials

What else can go wrong?

service startup during image creation

machine ID

systemd preset behavior
file system permissions

sacrificing legal compliance for image size

More details:
https://www.get-edi.io/11-Traps-to-Avoid-When-Building-Debian-Images/
https://www.get-edi.io/Secure-by-Default-ssh-Setup/

https://www.get-edi.io/11-Traps-to-Avoid-When-Building-Debian-Images/
https://www.get-edi.io/Secure-by-Default-ssh-Setup/

Summary

Best Practices

Do not take Debian for very resource constrained devices
(consider using Yocto, ptxdist, buildroot etc. for such use
cases).

Make sure that your hardware at least supports ARMv7 with
VFPV3 (required for Debian armhf).

Make sure that the majority of your application can be
developed and tested on the development host (within a digital
twin of the target hardware):

- faster development cycle
- easier to test (also in virtual environment)
- portable to future hardware

Use standard interfaces like USB and Ethernet to improve
readiness for future hardware and emulated environments.

Properly package your software as Debian packages.

Conclusion

Nowadays, Debian is a great choice for many embedded use
cases.

Since Debian stretch the cross compiler packages are part of
the main repository.

Debian development requires some infrastructure (build server,
package server, etc.).

If your software is not a one-man business, it is advisable to
automate the setup of your infrastructure.

Take whatever IDE you like.

edi (https://www.get-edi.io) will help you to efficiently handle
your Debian environment.

Try out edi and comment, contribute, ...

https://www.get-edi.io/

Key technologies:

Debian, Ubuntu, Ansible,
LXD, Python, Yaml, Jinja2

License compliance:

integration through machine-readable
debian/copyright files planned

Hardware testbed:

sample configurations for the
Raspberry Pi are available

Update strategies:

supports incremental (packages)
and full OS updates (e.g. Mender)

Supported architectures:

supports the Debian
architectures (host + target)

Debian packages for:

Ubuntu (xenial, bionic, disco) Securlty_
Debian (stretch) https://www.debian.org/security/
5 year LTS life cycle!

Open source:

LGPL license
https://github.com/lueschem/edi

Quality assurance:

edi gets automatically tested and
has a around 90% code coverage

_ . Digital twin:
https //WWW g et-ed l. IO for development and cross
compilation
_ Community:
Support. worldwide usage, small number
ask question using disqus, of contributors

report issues using GitHub

https://www.get-edi.io/
https://github.com/lueschem/edi
https://www.debian.org/security/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

