

Efficient Usage of Debian on
Embedded Devices

OSADL Networking Day, 5. June 2019

Matthias Lüscher
lueschem@gmail.com

Initial Position

IoT – It’s a Debian world...

Source: https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf

https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf

… dominated by ARM and Intel hardware ...

Source: https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf

https://iot.eclipse.org/resources/iot-developer-survey/iot-developer-survey-2019.pdf

… requiring a lot of infrastructure!

See also: https://www.get-edi.io/Infrastructure-at-Your-Fingertips/

https://www.get-edi.io/Infrastructure-at-Your-Fingertips/

A collection of best practices
on how you can efficiently use
Debian in such an
environment.

An introduction of the tool edi
and some insights on how it
will speed up your
development process (with a
special attention to the build of
OS images).

Presentation Content

https://www.get-edi.io

https://www.get-edi.io/

Development Setup

Create a digital twin of your target hardware!
(And do 95% of the development without the target hardware.)

e.g. Ubuntu 18.04 LTS

● running on amd64 hardware
● equipped with LXD

Digital Twin of Target Hardware

● same Debian release as target
● same configuration as target
● same interfaces as target

(network, serial, etc.)
● but amd64 architecture
● running as OS container
● ready for cross compilation
● shared folder with host OS
● generated by a single command:
edi -v lxc configure ...

Integrate your favorite IDE!

● You can choose whatever IDE you like.

● To improve the overall handling, it is advisable to run the IDE
within the development container.

More information: http://www.get-edi.io/Running-GUI-Applications-Within-LXD-Container/

http://www.get-edi.io/Running-GUI-Applications-Within-LXD-Container/

Develop (real time) applications!

relevant devices can be
forwarded to the container

host OS needs to be equipped
with a PREEMPT_RT patched
kernel if real time behavior is
required

Ethernet based
field bus

containers do not downgrade
the real time capabilities of the
host system

Do not forget to setup a package repository!

the Debian package
repository is an
indispensable part
of your development
infrastructure

do the extra mile and
package your software
as proper Debian
packages

repository hosting solutions:
https://www.aptly.info/
https://jfrog.com/artifactory/
https://packagecloud.io/
...

https://www.aptly.info/
https://jfrog.com/artifactory/
https://packagecloud.io/

Cross Compilation

What is cross compilation?

● Wikipedia: A cross compiler is a compiler capable of creating executable
code for a platform other than the one on which the compiler is running.

● Easy: Kernel (no dependencies, well prepared for cross compilation)

● Less easy: Libraries and executables (dependencies, maybe not cross
compilation aware)

Why cross compile?

● Speed: Cross compilation is a lot faster!

● Flash: The target system might not have enough flash for compilation.

● Memory: The target system might run out of memory during compilation.

More information: http://www.get-edi.io/Compiling-for-Embedded-Debian-Target-Systems/

Cross (i7-7500U)

Emulated (Qemu, i7-7500U)

Target (Pi 3B)

0 10 20 30 40 50 60 70

OpenSSL compilation time

[minutes]

http://www.get-edi.io/Compiling-for-Embedded-Debian-Target-Systems/

How should I cross compile with Debian?

● Environment is “self contained”: For Debian stretch you build within Debian
stretch.

● The Debian project does build ARM packages on ARM hardware.

● For a long time Debian was not well suited for cross compilation.

What has changed recently?

● Debian got broadly adopted for embedded devices.

● Multiarch and multilib got introduced in Debian wheezy: You can
add a foreign architecture and install libraries and foreign
libraries side by side:
sudo dpkg --add-architecture armhf
sudo apt update
sudo apt install <library>:armhf

● With Debian stretch the cross compilers became part of the
main Debian repository:
sudo apt install crossbuild-essential-armhf

Building Operating System
Images

How can I build images for my target system?

● The “digital twin” cross development container gets built using a command
like this:
sudo edi -v lxc configure edi-pi-cross-dev pi3-stretch-arm64-cross-dev.yml

● Building a full OS image can be achieved with such a command:
sudo edi -v image create pi3-stretch-arm64.yml

More information: http://www.get-edi.io/A-new-Approach-to-Operating-System-Image-Generation/

http://www.get-edi.io/A-new-Approach-to-Operating-System-Image-Generation/

What happens behind the scene?

It starts from scratch...

… using debootstrap!

Instead of using a chroot
we launch a LXD
container.

Ansible gets used to
customize the container.

Custom commands turn
the root file system into
an OS image.

QEMU emulates foreign
architectures.

What about different use cases?

The edi project
configuration is built
in a way that makes
it easy to support
multiple use cases
without duplicating the
setup.

How can I configure the use cases?

Use cases can be
adjusted globally,
per host and per
user.

edi supports as
many use cases
as required.

Configuration files
are written in
yaml and Jinja2.

Can I update my system over the air?

More information: https://www.get-edi.io/Updating-a-Debian-Based-IoT-Fleet/

https://www.get-edi.io/Updating-a-Debian-Based-IoT-Fleet/

What partition layout shall I choose?

More information:
https://www.get-edi.io/Updating-a-Debian-Based-IoT-Fleet/
https://www.get-edi.io/Booting-Debian-with-U-Boot/

Adjust your partition
layout before you ship
the first product!

https://www.get-edi.io/Updating-a-Debian-Based-IoT-Fleet/
https://www.get-edi.io/Booting-Debian-with-U-Boot/

What is the longevity of my OS image?

More information:
https://www.freexian.com/services/debian-lts.html

Attention:
(stretch)-backports will
not receive LTS support!

The schedule allows
you to skip one release!

https://www.freexian.com/services/debian-lts.html

Pitfalls

What can go wrong?

● ssh host keys

● software installation without Debian packages

● choosing a local Debian mirror

● skip signature checks

● not reproducible customization

● login credentials

What else can go wrong?

● service startup during image creation

● machine ID

● systemd preset behavior

● file system permissions

● sacrificing legal compliance for image size

More details:
https://www.get-edi.io/11-Traps-to-Avoid-When-Building-Debian-Images/
https://www.get-edi.io/Secure-by-Default-ssh-Setup/

https://www.get-edi.io/11-Traps-to-Avoid-When-Building-Debian-Images/
https://www.get-edi.io/Secure-by-Default-ssh-Setup/

Summary

● Do not take Debian for very resource constrained devices
(consider using Yocto, ptxdist, buildroot etc. for such use
cases).

● Make sure that your hardware at least supports ARMv7 with
VFPv3 (required for Debian armhf).

● Make sure that the majority of your application can be
developed and tested on the development host (within a digital
twin of the target hardware):

- faster development cycle
- easier to test (also in virtual environment)
- portable to future hardware

● Use standard interfaces like USB and Ethernet to improve
readiness for future hardware and emulated environments.

● Properly package your software as Debian packages.

Best Practices

Conclusion

● Nowadays, Debian is a great choice for many embedded use
cases.

● Since Debian stretch the cross compiler packages are part of
the main repository.

● Debian development requires some infrastructure (build server,
package server, etc.).

● If your software is not a one-man business, it is advisable to
automate the setup of your infrastructure.

● Take whatever IDE you like.

● edi (https://www.get-edi.io) will help you to efficiently handle
your Debian environment.

● Try out edi and comment, contribute, ...

https://www.get-edi.io/

https://www.get-edi.io

Open source:
LGPL license

https://github.com/lueschem/edi

Digital twin:
for development and cross

compilation

Community:
worldwide usage, small number

of contributors

Support:
ask question using disqus,
report issues using GitHub

Supported architectures:
supports the Debian

architectures (host + target)

Update strategies:
supports incremental (packages)

and full OS updates (e.g. Mender)

License compliance:
integration through machine-readable

debian/copyright files planned

Key technologies:
Debian, Ubuntu, Ansible,

LXD, Python, Yaml, Jinja2

Security:

https://www.debian.org/security/
5 year LTS life cycle!

Debian packages for:

Ubuntu (xenial, bionic, disco)
Debian (stretch)

Quality assurance:
edi gets automatically tested and

has a around 90% code coverage

Hardware testbed:
sample configurations for the
Raspberry Pi are available

https://www.get-edi.io/
https://github.com/lueschem/edi
https://www.debian.org/security/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31

