Cross Compiling For
Embedded Debian Target
Systems

Matthias Lischer, 2. July 2018

Content

What Is cross compiling?

Why should | cross compile?

How should | cross compile with Debian?

How can | manage my cross compilation tool chain?

How can | integrate my favorite IDE?
What are the best practices?
Where can | get more information?

What Is cross compiling?

rdevelopment host' rftarget system\

1]
Cross
[compilej

[rn |

Cear

___ﬁf

- _/ . S

Wikipedia: A cross compiler is a compiler capable of creating executable code for a
platform other than the one on which the compiler is running.

Easy: Kernel (no dependencies, well prepared for cross compilation)

Less easy: Libraries and executables (dependencies, maybe not cross compilation
aware)

Why cross compile?

OpenSSL compilation time

Target (Pi 3B)

Cross (i7-7500U) -
0

[minutes]

« Speed: Cross compilation is a lot faster!
« Flash: The target system might not have enough flash for compilation.

« Memory: The target system might run out of memory during compilation.

More information: http://www.get-edi.io/Compiling-for-Embedded-Debian-Target-Systems/

70

How should | cross compile with Debian?

-

development host

-

development host

g
development container
/_\ P
compite] [run -
compile run

Gompilej (run j
\[editj/) \ /

- ~ [editj

e _/

~

_/

« Environment is “self contained”: For Debian stretch you build within a Debian stretch.
« The Debian project does build ARM packages on ARM hardware.

« For along time Debian was not well suited for cross compilation.

What has changed recently?

« Debian got broadly adopted for embedded devices.

« Multiarch and multilib got introduced in Debian wheezy:
You can add a foreign architecture and install libraries
and foreign libraries side by side:

sudo dpkg --add-architecture armé64

sudo apt update
sudo apt install <library>:armé64

« With Debian stretch the cross compilers became part of
the main Debian repository:

sudo apt 1install crossbuild-essential-armé64

How can | manage my tool chain(s)?

Ubuntu 16.04 development host

|
J edi Ixc conflgure edi Ixc conflgure

armo64 armé64 dev amd64 cross
container container dev container

shared folder edi-workspace

edi image create ...

v

Raspberry Pi3

image ssh/scp
|

[
bmaptool copy ...

0ooa

« Classical approach: Build a matching chroot (https://en.wikipedia.org/wiki/Chroot)
environment and use it for cross compilation.

Raspberry Pi3

A

« Containerized approach: Build a Linux container containing a cross tool chain:

sudo edi -v 1lxc configure edi-pi-cross-dev pi3-stretch-armé4-cross-dev.yml

More information: http://www.get-edi.io/A-new-Approach-to-Operating-System-Image-Generation/

How can | integrate my favorite IDE?

Aktivitdten ® QtCreator v Fr 22:05

alyze Tools Window Help

weone S o+ New Project | & OpenProject |

=] Examples Sessions Recent Projects

Tutorials 1 default {last session)

New to Qt?

Learn how to develop
your own applications and
explore Qt Creator.

Get Started Now AbedtiQtiErestor Sic Terminal Hilfe

Qt Creator 4.2.0 stretch-cross:~ xport DISPLAY=:0
stretch-cross ort QT_SCALE_FACTOR=1
stretch-cross ort QT_AUTO_SCREEN_SCALE_FACTOR=0
Copyright 2008-2016 The Qt Company Ltd. All rights stretch-cross ort QT_SCREEN_SCALE_FACTORS=2
reserved. stretch-cross:~$ qtcreator
The program Is provided AS IS with NO WARRANTY LOADER: fatled to retrieve device information
OF ANY KIND, INCLUDING THE WARRANTY OF on 4 or later of flush extension not found
DESIGN, MERCHANTABILITY AND FITNESS FOR A d to load driver: 1915
PARTICULAR PURPOSE. d to open drm device: Permission denied

Close d to load driver: 1965

— me/lueschem\" could not be started."

Based on Qt 5.7.1 (GCC 6.3.0 20170415, 64 bit)

P. Type to locate (Ctrl+K) ssues 2 Search R... 3 Applicatio... 4 Compile ... 5 Debugger...

« You can choose whatever IDE you like.

« To improve the overall handling, it is advisable to run the IDE within the development
container.

More information: http://www.get-edi.io/Running-GUI-Applications-Within-LXD-Container/

What are the best practices?

« Do not take Debian for very resource constrained devices
(consider using Yocto, ptxdist, buildroot etc. for such use

cases).

« Make sure that the majority of your application can be
developed and tested on the development host:

- faster development cycle |
- easier to test (also in virtual environment)
- portable to future hardware

« Use standard interfaces like USB and Ethernet to improve
readiness for future hardware and emulated environments.

Conclusion

Nowadays, Debian is a great choice for many embedded
use cases.

Since Debian stretch the cross compiler packages are part
of the main repository.

If your software Is not a one-man business, it is advisable
to automate the setup of the (cross) tool chain.

Make sure that your software Is for the most part hardware
iIndependent and enjoy the possibility to develop and test
the software in a virtual amd64 environment.

Take whatever IDE you like.

Where can | get more information?

e Debian wiki page about cross compilation:
https://wiki.deblan.org/CrossCompiling

« My personal (Debian biased) blog:
http://www.get-edi.io/blog/

 sbuild: Tool for building Debian binary packages from
Debian sources:
https://wiki.debian.org/sbuild

https://wiki.debian.org/CrossCompiling
http://www.get-edi.io/blog/
https://wiki.debian.org/sbuild

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

