

Cross Compiling For
Embedded Debian Target

Systems

Matthias Lüscher, 2. July 2018

Content

● What is cross compiling?

● Why should I cross compile?

● How should I cross compile with Debian?

● How can I manage my cross compilation tool chain?

● How can I integrate my favorite IDE?

● What are the best practices?

● Where can I get more information?

What is cross compiling?

● Wikipedia: A cross compiler is a compiler capable of creating executable code for a
platform other than the one on which the compiler is running.

● Easy: Kernel (no dependencies, well prepared for cross compilation)

● Less easy: Libraries and executables (dependencies, maybe not cross compilation
aware)

Why cross compile?

● Speed: Cross compilation is a lot faster!

● Flash: The target system might not have enough flash for compilation.

● Memory: The target system might run out of memory during compilation.

More information: http://www.get-edi.io/Compiling-for-Embedded-Debian-Target-Systems/

Cross (i7-7500U)

Emulated (Qemu, i7-7500U)

Target (Pi 3B)

0 10 20 30 40 50 60 70

OpenSSL compilation time

[minutes]

How should I cross compile with Debian?

● Environment is “self contained”: For Debian stretch you build within a Debian stretch.

● The Debian project does build ARM packages on ARM hardware.

● For a long time Debian was not well suited for cross compilation.

What has changed recently?

● Debian got broadly adopted for embedded devices.

● Multiarch and multilib got introduced in Debian wheezy:
You can add a foreign architecture and install libraries
and foreign libraries side by side:

sudo dpkg --add-architecture arm64
sudo apt update
sudo apt install <library>:arm64

● With Debian stretch the cross compilers became part of
the main Debian repository:

sudo apt install crossbuild-essential-arm64

How can I manage my tool chain(s)?

● Classical approach: Build a matching chroot (https://en.wikipedia.org/wiki/Chroot)
environment and use it for cross compilation.

● Containerized approach: Build a Linux container containing a cross tool chain:

sudo edi -v lxc configure edi-pi-cross-dev pi3-stretch-arm64-cross-dev.yml

More information: http://www.get-edi.io/A-new-Approach-to-Operating-System-Image-Generation/

How can I integrate my favorite IDE?

● You can choose whatever IDE you like.

● To improve the overall handling, it is advisable to run the IDE within the development
container.

More information: http://www.get-edi.io/Running-GUI-Applications-Within-LXD-Container/

What are the best practices?

● Do not take Debian for very resource constrained devices
(consider using Yocto, ptxdist, buildroot etc. for such use
cases).

● Make sure that the majority of your application can be
developed and tested on the development host:

- faster development cycle
- easier to test (also in virtual environment)
- portable to future hardware

● Use standard interfaces like USB and Ethernet to improve
readiness for future hardware and emulated environments.

Conclusion

● Nowadays, Debian is a great choice for many embedded
use cases.

● Since Debian stretch the cross compiler packages are part
of the main repository.

● If your software is not a one-man business, it is advisable
to automate the setup of the (cross) tool chain.

● Make sure that your software is for the most part hardware
independent and enjoy the possibility to develop and test
the software in a virtual amd64 environment.

● Take whatever IDE you like.

Where can I get more information?

● Debian wiki page about cross compilation:
https://wiki.debian.org/CrossCompiling

● My personal (Debian biased) blog:
http://www.get-edi.io/blog/

● sbuild: Tool for building Debian binary packages from
Debian sources:
https://wiki.debian.org/sbuild

https://wiki.debian.org/CrossCompiling
http://www.get-edi.io/blog/
https://wiki.debian.org/sbuild

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11

