Automating and Managing an loT
Fleet Using Git

Open Source Summit Europe 2022

Matthias Luscher, Schindler AG

About Me

| prefer to automate boring jobs:

— E.g. as a child: Operate a ball track using an
elevator

- E.g. as a professional: Operate |0T devices
that connect elevators using CI/CD

* Instead of attending a lot of courses and earning
some training awards | decided to create my own
open source (automation research) project called
edi

* | live in Switzerland and work for Schindler AG as a
principal engineer

* During my spare time | enjoy the nature together
with my family (biking, hiking, skiing, ...)

* Contact: lueschem@gmail.com

https://www.get-edi.io/

Mission:

Automate as much as possible in an loT

environment including OS image builds,

testing, configuration management and
fleet management.

¥
¥ wewoer €) GitHub S

eeeeeeeee

vvvvvvvvv

Continuous Integration

Build an OS image for an loT
device, dispatch it to a device
and test it

Jb.comilueschemkiosk-playbook.git
ion:
t:
Hi https:fiwww get-odi.io
. . . REST AP
ul

°o_ 8 menper

nnnnnn
11111111

/ hhh .
‘—’gnclm .
") GitHub

Debian Packages

debian

Device Management

Adjust an 10T device for an individual
use case

Continuous Delivery

Keep an entire 10T fleet up to date
using git

Continuous Integration

Continuous Integration
Overview: OS image - OTA update - test

Workflow
1. Start the workflow on GitHub ([1 (private)], [1 (public)])
.mgm oscioge 2. Ajob gets dispatched to the self-hosted runner
@ 3. The runner clones git repositories
%% menper) GitHub y 4. During the OS build a lot of Debian packages will be

debian fetched

The OS artifact will be uploaded to Mender

The OS artifact will be dispatched to the chosen device
The device will be thoroughly tested ([2])

All the build and test results get uploaded to GitHub

l | Job Result
0S Artifact . .
Repositories

os posil
‘ m“ad\‘ / ackages
e

\
© N o

Key Principles

Security ([3])
Reproducibility
Automation
Quality assurance

https://github.com/lueschem/edi-ci/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/tree/main/tests
https://github.com/lueschem/edi-ci/settings/secrets/actions

Continuous Integration
Start workflow

repository:
edi-cl
repository_version:
master
configuration:
iot-gate-imx8-bullseye-armé4.ym|
device_id:
ID_OF_DEVICE_A

Workflow
1. Start the workflow on GitHub ([1 (private)], [1 (public)])

REST API 3
. ESTS & package
m MENDER (>GitHUb E Run workflow «
wes debian
. | .l ‘T Use workflow from
Job Result
0S Artifact ' . Branch: main ¥
. Repositories Debian =~
. Artifact Packages edi project repository *
/ edi-cl
Public) i i
Network branch/version of edi project
————————————————————————————————— [»Ie]—— repository *
Router Private
l _] Network master
< . . .
< 0S image configuration *
<
<

iot-gate-imx8-bullseye-arm64.yml

Self-hosted Runner
(based on edi-pi)

Mender device ID *

._Tesls_}
5ef8c955-4187-4243-adcd-160f70c3c45e

Test Device A

Test new 0S image

Run workflow
7

Test Device B

https://github.com/lueschem/edi-ci/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/tree/main/tests
https://github.com/lueschem/edi-ci/settings/secrets/actions

Continuous Integration
Build the OS image

/ it starts from scratch...

] - using debootstrap!

edi image bootstrap CONFIG

custom commands turn the root
file system into an OS image

L QEMU emulates foreign
e architectures

distributable
image
edi Ixc prepare CONFIG 1

instead of using a chroot ediimage create CONFIG
we launch a LXD container o
Ol [coibinoimege)
Ansible gets used to
edi Ixc import CONFIG / I

customize the container

edi Ixc export CONFIG
I t edi Ixc launch edi Ixc configure 8 E—
”r:'a”'r;?n f;dnligere NAME CONFIG _(‘minimal running Ixd \ NAME CONFIG _[fully configured | ediixc stop CONFIG_(configured, stopped \edi Ixc publish CONFIG ﬁltzqnaflg::ﬁ e 2n§
: store ° _ container) | Ixd container | _ Ixd container) 9 9

store

8

Continuous Integration
Test the device

18
19
20

import re
import pytest

def test_root_device(host):

cmd = host.run("df / --output=pcent")

assert cmd.rc == 0

match = re.search(r"(\d{1,33})%", cmd.stdout)

assert match

if the usage is below 50% then the root device got properly resized

assert int(match.group(1)) < 50

def test_resize_completion(host):

assert host.file("/etc/edi-resize-rootfs.done").exists

@pytest.mark.parametrize("mountpoint",
def test_mountpoints(host, mountpoint):

["/", "/data", "/boot/firmware",

assert host.mount_point(mountpoint).exists

1

-J

Router

lllLe

Self-hosted Runner
(based on edi-pi)

AT RN

Private
Network

Test Device A

Test Device B

Workflow

7. The device will be thoroughly tested ([2])

https://github.com/lueschem/edi-ci/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/tree/main/tests
https://github.com/lueschem/edi-ci/settings/secrets/actions

Continuous Integration

Handling of secret stuff

ACtlonS secrets New repository secret
repository:
edi-cl
repository_version:
master
o & bullsoye-armbyml Secrets are environment variables that are encrypted. Anyone with collaborator access to this repository can use these
o bEviE A secrets for Actions.

Secrets are not passed to workflows that are triggered by a pull request from a fork. Learn more.
or Ul

. REST API & package: |

N MENDER O GitHub :E @ CI_CD_SSH_PUB_KEY Updated on 8 Apr Update Remove

wee debian
6 | .l 8 © DEVICE_SECRETS Updatedon 8 May ~ Update Remove
08 Artiact dop ‘ Hosuit .
o8 Repositories Debian *”
5 A /"““ag"s @ MENDER_PASSWORD Updated on 8 Apr ~ Update | Remove
Hetuort & MENDER_TENANT_TOKEN Updated on 8 Apr Update Remove
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr [aIe]——
Router Private
| Network) MENDER_USER Updated on 8 Apr Update ~ Remove
<
. .
Self-hosted Runner Secu rlty (-[il)

(based on edi-pi)

e TE S8 s

Test Device A

10

Test Device B

https://github.com/lueschem/edi-ci/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/actions/workflows/os-deployment.yml
https://github.com/lueschem/edi-ci-public/tree/main/tests
https://github.com/lueschem/edi-ci/settings/secrets/actions

Device Management

Device Management
Example: Turn an loT device into a GitHub runner

Workflow

g“" ‘ 1. Assign a configuration to a device

L 2. A configuration artifact gets dispatched to the device

== i 3. The device fetches a playbook using git ([1])
q e &wpackage 4. The device fetches the roles that the playbook requests
v @ 5. The device fetches the .NET GitHub actions runner binary
m MENDER QGitHub debi 6. The dgvice fetc_hes some addit_ional Debian pa(_:kages
coian 7. The GitHub actions runner registers itself on GitHub ([2])

Key Principles

* |dempotency

* Traceability

* The device knows a lot about itself
* Security

* Reproducibility

* Automation

Self-hosted Runner 1 2

https://github.com/lueschem/edi-gh-actions-runner-playbook/blob/main/playbook.yml
https://github.com/lueschem/edi-ci/settings/actions/runners

Device Management
Example: Turn an loT device into a GitHub runner

playbook_url:
https://github.com/lueschem/ WO rkfl OW
edi-gh-actions-runner-playbook.git

playbook_version:
main

github_account:

-Cl
laccess_token:
ghp_XXXX

3. The device fetches a playbook using git ([1])

or Ul

. REST API & package: 01

& menper OGitHub @

debian

([X X J
- name: Install GitHub Actions Runner

hosts: all

roles:
- role: ansible-github_actions_runner

user: gitops
become: true

' - role: edi_installer
< become: true

Self-hosted Runner

© 00 N O 00 &~ WN B

[
o

(based on edi-pi)

13

https://github.com/lueschem/edi-gh-actions-runner-playbook/blob/main/playbook.yml
https://github.com/lueschem/edi-ci/settings/actions/runners

Device Management
Example: Turn an loT device into a GitHub runner

playbook_url:
https://github.com/lueschem/

edi-gh-actions-runner-playbook.git RU nners StatUS

playbook_version:
mai

gitl;g?;irepo: raspberry Se|f-hOSted LIHUX ARM64 . Idle

ccess_token:
ghp_XXXX

|
. REST AP & package: o1
+ ' ; . ’

&2 menper GitHub .
e O debian 7. The GitHub actions runner registers itself on GitHub ([2])

Self-hosted Runner 14
ase i-pi

https://github.com/lueschem/edi-gh-actions-runner-playbook/blob/main/playbook.yml
https://github.com/lueschem/edi-ci/settings/actions/runners

Device Management
Example: Turn a headless device into a kiosk terminal

Ah

————
06

playbook_url:
https //gth b om/I schem/kiosk-playbook.git
pla; yb 0K_Ve
ain

kiosk_url:

) https://www.get-edi.io

=
1
meal

REST API
! ! or
ul

‘/ m MENDER
/ @

PI aybool k

o O GitHub

(Ans| blGI xy)

\‘

Workflow

1. Assign a configuration to a device

2. A configuration artifact gets dispatched to the
device

3. The device fetches a playbook using git

4. The device fetches the roles that the playbook
requests

5. The playbook gets applied and during that

process some additional packages might get
installed

Key Principles

Idempotency

* Traceability
* The device knows a lot about itself

15

Continuous Delivery

Demo Fleet

Different devices, different use cases

1 2 3 4

1. Raspberry Pi 2
legacy device
2. Compulab IOT-GATE-IMX8
WIiFi 6 hotspot
3. Raspberry Pi 3
kiosk terminal
4. Raspberry Pi 3
kiosk terminal
5. Variscite VAR-SOM-MX8M-NANO
development device
6. Raspberry Pi 4
GitHub actions runner
7. Raspberry Pi4
kiosk terminal 17

https://www.raspberrypi.com/products/
https://www.compulab.com/de/products/iot-gateways/iot-gate-imx8-industrial-arm-iot-gateway/
https://www.raspberrypi.com/products/
https://www.raspberrypi.com/products/
https://www.variscite.de/product/system-on-module-som/cortex-a53-krait/var-som-mx8m-nano-nxp-i-mx-8m-nano/
https://www.raspberrypi.com/products/
https://www.raspberrypi.com/products/

GIitOps

What is GitOps?

A new concept/buzzword in the IT industry

The goal is to automate as many IT operations as possible

The automation shall be based on a fully declared and versioned target state
Git is usually the tool of choice to store the target state

A bunch of tools are responsible for applying the target state to the infrastructure

- GitOps is not only applicable within the IT industry -
it can also be very beneficial for embedded and 10T use cases!

commit and

GIitOps

Map the fleet to a git repository

A production

branch
(O]
2
(O]
S canary
>
= branch
o

main

branch
(0]
2
2| branch

\/

merge
bump

version

commit ... commit ... commit

merge
feature
version

... commit comit ... commit ..

merge
bump
version

... commit ...

—>

@ @ legacy device, WiFi 6 hotspot,
@ @ kiosk terminal, GitHub actions runner

kiosk terminal

kiosk terminal

development device

GIitOps

How it works behind the scene

Workflow

1.

akrow

A branch gets modified:

develop/feature branch: commit
main/canary/production branch: merge

GitHub dispatches a job to a runner ([1])

and the runner clones the fleet repository ([2], [3], [4])
The fleet facts get retrieved from Mender

OS update requests get scheduled ([5])
Configuration update requests get scheduled

Key Principles

Idempotency
Traceability
Staged roll outs
From main branch and upwards no changes
Proxy between management server and fleet
20

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

GIitOps
Already familiar tools take care of the orchestration

Workflow

. Change
on branch

¥ o
) GitHub —— () GitH-*

Repository Server

NS oL
IoT Device

o 0 e

Actions Runner “"*'"

Config
Update

juest

@
M MENDER

1

Device Config
Facts Artifact

Device 0S Update
Facts Request

os
Artifact

ansiate
loT Device

ANSIBLE

loT Device

2.

GitHub dispatches a job to a runner ([1])

© 00 N O g b~ W N R

S S O Y
© 0O N O O b wWKN PO

N
(o]

name: update fleet
on:
push:
workflow_dispatch:

jobs:
build:
runs-on: ubuntu-20.04
steps:
- name: Check out the fleet management playbook
uses: actions/checkout@v3
- name: Install jmespath into venv of ansible-core
run: |
source /opt/pipx/venvs/ansible-core/bin/activate
python3 -m pip install jmespath
- name: Run the fleet management playbook
uses: dawidd6/action-ansible-playbook@v2
with:
playbook: manage-fleet.yml
options: --inventory inventory.yml

21

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

GIitOps

An Ansible playbook takes care of the fleet

1 -
| 2 - name: Apply 0S and configuration to fleet.
."?;’Egi" . 3 hosts: all
OGitHub _m_’OGitHlﬁ : gather_facts: false
Repository Server Actions Runner *"*'"'" 6 pre_tas kigi=
.(.l \|. 7 - name: Check for minimum required Ansible version (>=2.10).
e Ogurine Upiae 8 assert:
) 9 that: "ansible_version.full is version_compare('2.10', '>=")"
® 10 msg: "Ansible >= 2.10 is required for this playbook."
M MENDER 11 run_once: true
t] .
e 1| e 13 vars:
os 14 playbook _mode: "{{ lookup('env', 'PLAYBOOK_MODE') | default('dry-run') }}"
Artifact 15
16 roles:
17 - role: gather_fleet_facts
10T Device 18 - role: install_os

19 when: subscribed_branch == applied_branch
20 - role: apply_configuration
21 when: subscribed_branch == applied_branch and configuration.template is defined

22

loT Device

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

GIitOps

The inventory of the fleet

Workflow
.s':;lnzeh
o +ac .
) GitHub —— () GitH-*
Repository Server Actions Runner *"*'"*"
] .
. %‘;gg;{e \'. and the runner clones the fleet repository ([2], [3], [4])
4) 1 all:
m MENDER 2 chi.ldren:
3 pi4:
Fazts | At 5 b8b311de-000e-4914-9a13-1d7e2e23bc5d: # GitHub runner
et 6 3fb4632b-96b9-475d-ac89-02255bd15b6F :
7 pai3:
8 hosts:
B / 9 50a28c2e-3ee8-4559-a5b9-3ce47c881chd:
10 f4580afc-7195-4c8b-h35a-e0248e6bd894:
11 pa2!:
12 hosts:
13 048312b5-0456-47a7-9e83-b63674c0a689:
14 iot_gate_imx8: 23
e 15 hosts:

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

GIitOps
An individual device configuration

Workflow

and the runner clones the fleet repository ([2], [3], [4])

subscribed branch: main

configuration:
template: kiosk.json

parameters:

N O 0o b~ WwN R

kiosk_url: https://www.get-edi.io 24

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

GIitOps
Eventually an OS update will get dispatched

I Workflow

Q.
¥ o
) GitHub —— () GitHl*

‘‘‘‘‘‘‘

Repository Server Actions Runner

Device 0S Update
Facts Request

4. OS update requests get scheduled ([5])

1 =
2 mender_server: "https://hosted.mender.io"
3 subscribed_branch: production
4
5 os_image:
6 - device_type: pi2-armhf
v i image_name: 2022-07-08-1050-pi2-bullseye-armhf
8 - device_type: pi3-armé4
9 image_name: 2022-07-08-0859-pi3-bullseye-armé4-gitops
10 - device_type: pi4-v3-armé64
11 image_name: 2022-07-08-0958-pi4-bullseye-armé4-gitops
. 12 - device_type: var-som-mx8m-nano-armé4-v2
oo 13 image_name: 2022-07-08-1129-var-som-mx8m-nano-bullseye-armé4

25

https://github.com/lueschem/edi-cd/blob/main/.github/workflows/update-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/manage-fleet.yml
https://github.com/lueschem/edi-cd/blob/main/inventory.yml
https://github.com/lueschem/edi-cd/tree/main/host_vars
https://github.com/lueschem/edi-cd/blob/main/group_vars/all.yml

i | allz:
. 2 children:
3 pi4:
It pS 4 hosts:
5 b8b311de-000e-4914-9a13-1d7e2e23bc5d: # GitHub runner
6 3fb4632b-96b9-475d-ac89-02255bd15b6f
Some remarks .
8 hosts:
9 50a28c2e-3ee8-4559-a5h9-3ce47c881chd:
10 f4580afc-7195-4c8b-b35a-e0248e6bd894:
11 pi2:
. . . . 12 hosts:
* The important monitoring aspect is out 13 048312b5-0456 - 47a7-9e83-b636T4c0a689:
of scope of this presentation! 1 ot gareAme:
15 osts:
. 16 5ef8c955-4f87-4243-adcd-160f70c3c45e:
* On a large fleet the inventory and the 17 var_som_mx8m_nano:
individual device configurations would e nosts: ,
19 ed531b64-5108-4f1d-9879-f39f56054078:

be offloaded to a separate tool/database.

subscribed_branch: main

configuration:
template: kiosk.json
parameters:

N~ o ok~ WON B

kiosk_ url: https://www.get-edi.io

26

Conclusion

commit and

A

only merge

merge

GitOps for Fleet Management

Key benefits |

N\ production ~ :> @ @
branch m:';e @ @
canary

branch

merge . merge
bump feature iX ix bump
version A version

develop
branch

i

commit ... commit ... commit ... commit comit ..

bump
version

Everybody is working on the
same git repository/talking the
same language

Full traceability

No changes introduced beyond
the main branch — just merges
Very high level of automation
Staged roll outs

Almost no room for human
errors

GitOps for Fleet Management

Key benefits Il

Q} git &3 menDER

o

GitHub

@ python’ o @

debian

* Powerful toolbox
* Suitable for a huge fleet
* Components are proven

In use

* Components are

exchangeable

* Fun to work with

29

Git Repositories

‘ Cl orchestration \ Playbooks/Roles

edi-ci/edi-ci-public kiosk-playbook
ansible-kiosk
OS Setup edi-gh-actions- CD Orchestration
runner-playbook .
edi-pi edi-cd
ansible-github__
edi-var actions_runner
edi-cl edi_installer
Continuous Integration Device Management Continuous Delivery
Build an OS image for an 10T Adjust an IoT device for an individual Keep an entire 10T fleet up to date
device, dispatch it to a device use case using git

) 30
and test it

https://github.com/lueschem/edi-ci
https://github.com/lueschem/edi-ci-public
https://github.com/lueschem/edi-pi
https://github.com/lueschem/edi-var
https://github.com/lueschem/edi-cl
https://github.com/lueschem/kiosk-playbook
https://github.com/lueschem/ansible-kiosk
https://github.com/lueschem/edi-gh-actions-runner-playbook
https://github.com/lueschem/edi-gh-actions-runner-playbook
https://github.com/MonolithProjects/ansible-github_actions_runner
https://github.com/MonolithProjects/ansible-github_actions_runner
https://github.com/lueschem/edi_installer
https://github.com/lueschem/edi-cd

Links

* Embedded Meets GitOps

* Managing an loT Fleet with GitOps

* Building and Testing OS Images with GitHub Actions
* Surprisingly Easy 10T Device Management

31

https://www.get-edi.io/Embedded-Meets-GitOps/
https://www.get-edi.io/Embedded-Meets-GitOps/
https://www.get-edi.io/Managing-an-IoT-Fleet-with-GitOps/
https://www.get-edi.io/Managing-an-IoT-Fleet-with-GitOps/
https://www.get-edi.io/Building-and-Testing-OS-Images-with-GitHub-Actions/
https://www.get-edi.io/Surprisingly-Easy-IoT-Device-Management/

Q&A

	Slide 1
	Content
	Slide 3
	Slide 4
	Slide 5
	Continuous Integration Automated hardware in the loop testing
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Continuous Integration Automated GitHub runner setup
	Slide 13
	Slide 14
	Device Management Turn the device into whatever it needs to be
	Slide 16
	Demo Fleet Different devices, different use cases
	GitOps Manage the fleet with a git repository
	Slide 19
	GitOps How it works behind the scene
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	GitOps for Fleet Management Key benefits I
	GitOps for Fleet Management Key benefits II
	Slide 30
	Links
	Slide 32

